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AN APPLICATION O F  GENERAIXZED MATRIX INVERSION TO 

SEQUENTIAL LEAST SQUARES PARAMETER ESTIMATION 

By Henry P. Decell, Jr. 
Manned Smcecraf t  Center 

The theory of generalized matrix inversion is  u t i l i z e d  i n  formulating a 
recursive algorithm for least squares parameter estimation. This algorithm 
allows the parameter estimation t o  begin after the f i rs t  "observation" has been 
made and affords  a means of computing the nth parameter s t a t e  f r o m  the (n-1)s t  
"parameter s ta te"  and the nth "observation. The problems associated with s in-  
gular  matrices encountered i n  i t e r a t i v e  l e a s t  squares procedures do not a f f e c t  
the algorithm. 

INTRODUCTION 

I n  the theory of  l i n e a r  l e a s t  squares parameter estimation, the matrix 
equation Ax = b i s  encountered, where A i s  an n X k matrix, x i s  a 
k X 1 "parameter" s t a t e  vector, and b i s  a n X 1 "observation" vector. 
There is  usually no vector  x t h a t  w i l l  s a t i s f y  t h i s  matrix equation s o  t h a t  
i n  some sense a "best solution" i s  t o  be found. I n  the  l e a s t  squares theory 
the "best  solution" i s  defined t o  be tha t  k X 1 vector x such tha t  A 

T f ( f i )  = (A$ - b) (A; - b)  i s  minimum. It i s  wel l  k n m  tha t  if 2 minimizes 

f ( x ) ,  then fi must s a t i s f y  the normal equations A = A b. If A A i s  T T T 

nonsingular and 

fi = (ATA)-lATb. 

A Ax = A b always has some solution and, i n  f ac t ,  may have i n f i n i t e l y  many 

solutions.  I n  case A A i s  singular,  a pa r t i cu la r  solut ion tha t  has physical 
meaning can be chosen. 

f (x)  has a minimum then, indeed, t h a t  minimum i s  at ta ined a t  

It w i l l  l a t e r  be shown tha t ,  i n  any case, the matrix equation 
T T 

T 

Nonlinear parameter estimation problems a re  usual ly  handled by l i nea r  ap- 
proximations of the ac tua l  parameter state i n  a neighborhood of a nominal pa- 
rameter s t a t e .  The resu l t ing  equations a re  of the same general form Ax = b; 
however, i n  t h i s  case x denotes the  deviation f r o m  the nominal sta%e, and b 
denotes the deviation i n  "observed" and "computed" values. The solution t o  t h i s  
equation requires  i t e r a t i v e  procedures and involves problems of singular matri- 
ces. The recursive algorithm t o  be developed w i l l  not be affected by these sin- 
gu la r i ty  problems. 
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The recursive algorithm d i f f e r s  f r o m  a similar algorithm developed by 
Gainer ( r e f .  1) i n  t h a t  no matrix inversion i s  required as a r e s u l t  of waiting 
for  a sufficien' t  number of observations t o  accumulate. The estimation proced- 
ure may begin a f t e r  the  first observation i s  made. The parameter s t a t e  can be 
estimated a t  a fixed epoch i n  time ( i n  dynamic systems) and, hence, i s  useful  
i n  t r a j ec to ry  calculat ions as wel l  as i n  guidance procedures. 
f o r  matrix inversion (and associated storage requirements ) i n  onboard calcula- 
t ions .  

There i s  no need 

SYMBOLS 

Capital  l e t t e r s  

Lower case l e t t e r s  vectors (unless otherwise stated) 

Greek le t ters  sca la rs  

m a  tr i ce s 

AT 

A-1 

A* 

1' diag a 

Z 

0 

I 1  I I  

t ranspose of A 

inverse of A 

generalized inverse of A 

diagonal matrix 

zero matrix 

zero vector 

euclidean norm 

TKE GEXEXALIZED INVERSE 

A. Bjerhammar ( r e f .  2 ) ,  E. H. Moore ( r e f .  3), and R. Penrose ( r e f .  4) inde- 
pendently generalized the  concept of matrix inversion. The generalized inverse 
of a singular and nonsquare matrix possesses propert ies  which make it a cent ra l  
concept i n  matrix theory. Only r e a l  matrices are considered i n  the def in i t ions  
and theorems t o  follow. However, f o r  complex matrices, t h e  def in i t ions  and 
theorems a re  iden t i ca l  i f  the word 'rtranspose'r i s  replaced with "conjugate 
transpose." 
stated without proof. 

The following fundamental theorem due t o  R.  Penrose ( r e f .  4) i s  
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THEOREN I. The fou r  equations 

AX24 = A  (1) 

XAX = x  (2) 

(xA)T = x A  ( 3  1 

(AX)T = A X  (4) 
have a unique solut ion X for each r e a l  matrix A. 

The solut ion X i n  THEOREM I i s  denoted as X = A+ and cal led the  gener- 

a l ized  inverse of A. It i s  easy t o  see t h a t  t h e  defining equations for A+ 

imply that AA+ and A A are, respectively,  orthogonal projection operators 

on the  range spaces of A and A . For the  sake of completeness the next the- 
orems w i l l  give some well known propert ies  of the generalized inverse. 

+ 
+ 

THEOREM 11. Le t  A be an arbitrary real  matrix. Then, 
and uni tary U and V 

+ + T T  T + TA+ 
A ( A )  A = A +  = A  ( A )  

+ T  T T +  A A A  = A  = A M  

(A+)+ = A 

(AT)+ = (A+)T 

+ -1 A = A  for 

+ 1 +  (?LA) = s ; A  

nonsingular A 

(ATA)+ = A+(A ) T  

-1 + 1 (UAV)+ = V A U- 

for i # j  
T 
J 1  

A.A. = Z 

A+ = )'A: 

for sca le r  I-, # o 
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If A i s  normal (i.e. A ~ A  = A A ~ )  

then, A'A = AA+ and (An)+ = (A')" 

A, ATA, A+ and A+A a l l  have rank equal 

t o  t race  A+A (15) 

(16) T + T  A+ = (A A) A 

Note t h a t  equation (16) reduces the problem of computing 

canputing the  generalized inverse of a symmetric matrix ATA. 
a matrix can always be diagonalized by a uni tary transformation, t h a t  is ,  

A+ t o  t h a t  of 

Moreover, such 

D = U ( A T ,  A V = diag (al, ..., 

Now equation (12) implies t h a t  

+ (ATA)+ = VD U = V diag 

It i s  t a c i t l y  assumed t h a t  i f  a, = 0, the  corresponding term i n  

\ -  I 

unitary transformations U and V. Methods f o r  computing the  generalized in- 
verse have been given by various authors (refs. 2, 5 ,  6, 7, and 8).  

The following i s  a theorem of major importance, characterizing a l l  solu- 
t i ons  of the matrix equations A B 3  = C which have some solut ion X. 

THEOREM 111. For the  matrix equation AXE3 = C t o  have a solution, a necessary 
and suf f ic ien t  condition i s  

+ +  A A C B B = C  

i n  which case, the general  solution i s  
+ +  x = A CB + Y - A+AYBB+ 

where Y i s  arbitrary t o  within the limits of being consistent with dimension 
i n  the indicated mult ipl icat ions ( r e f .  4) .  

Proof: Suppose X satisfies AXB = C. Then, 

+ + + +  
C = M AXBB B = M CB B 

+ +  + +  
Conversely, i f  C = AA CB B, then A CB i s  a pa r t i cu la r  solution. Clearly, 
for  the general solut ion AXB = 0 must be solved. Any expression of t he  form 
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x = Y - A+AYBB+ 

i s  such a solution. Moreover, i f  AXB = 0, then, 

x = x - A+AXBB+ 
+ + 

The only propert ies  required of A+ and B i n  the  theorem are AA A = A and 

BB B = B. 
+ 

Corollary A. The general  solut ion t o  the  vector equation 

Px = c 

is  

x = P+C + (I - P+P)y 

where y i s  a rb i t ra ry ,  provided a solut ion ex is t s .  

Corollary B. A necessary and su f f i c i en t  condition f o r  the  equations 

A X = c  

and 

XB = D  

t o  have a common solut ion i s  that  each have a solution and AD = CB (ref. 4).  

Proof: If  AX = C and XB = D have a common solution, then c l ea r ly  each has 
a solution, and 

AXB = CB 

AXE! = A D  

s o  t h a t  

CB = AD 

I n  order t o  obtain the  sufficiency, it i s  assumed t h a t  

+ x = A+C + DB - A+ADB+ 
+ 

which i s  a solut ion i f  AD = CB, AA+C = C, and DB B = D. 

5 



THEOREM N. The terms 

A+A, AA', I-A'A, and 1 - AA+ a re  symmetric idempotents 

and 

(18) 
+ 

H i s  a symmetric idempotent which implies t h a t  H = H 

TKF RECURSIVE AXORITHM 

An easy consequence 
T T A Ax = A b always has a 

T 
if A A i s  nonsingular, 

of equation (6) i s  t h a t  the  matrix equation 

solution. Indeed, x = A b i s  a solution. I n  f a c t ,  

t h i s  solut ion i s  unique and i s  the  usual l e a s t  squares 

+ 

+ 
solution. 
a r b i t r a r y  y, gives a l l  solutions. The t r i ang le  inequal i ty  a l s o  implies t h a t  

Moreover, according t o  corol lary A, x = A+b + (I - A A)y,  for 

+ x = A  b i s  t h a t  solution with m i n i "  norm. When x i s  a parameter s t a t e  

deviation vector ( i . e .  the  nonlinear estimation case),  x = A b yields  the 
estimate of the parameter s t a t e  deviation t h a t  has minimum norm. Physically 
speaking, t h i s  means t h a t  among a l l  possible estimates of the  ac tua l  parameter 
s t a t e ,  the  estimate of the  ac tua l  parameter state obtained by correcting the 
nominal parameter state by x 
parameter state. 

+ 

i s  as close as possible ( i n  norm) t o  nominal 

T T The poss ib i l i t y  of A Ax = A b having i n f i n i t e l y  many solutions i s  
T c l ea r ly  equivalent t o  the s ingular i ty  of  the matrix A A. I n  t h i s  case an 

i t e r a t i v e  procedure would h a l t .  However, the ad ro i t  choice of  the physically 
meaningful minimal nom solution would allow the i t e r a t i o n  t o  continue. 

fiom a computational viewpoint, it i s  desirable  t o  have a recursive 
algorithm for the  s t a t e  estimation. The following theorem w i l l  give rise t o  
the recursive computation of  the parameter s t a t e  deviation. 

# e be any row vector 
J an)  THEOREM V. Let a = 

and 

+ aa = (1) 
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+ 
Proof: It w i l l  be sham t h a t  a = aT satisfies equations (1) to (4). 

I I  all 

+ 
Greville ( r e f .  9) noted t h a t  a i s  a constant multiple of aT but does not 
give t h i s  e x p l i c i t  form. 

As a simple example, consider the vector equation 

This equation has 
many solutfons so  

a solut ion a = 1, b = 1. I n  f ac t ,  t he  equation has i n f i n i t e l y  
tha t  according t o  C o r o l l a r y A  the  general solution i s  given by 

where y i s  an a r b i t r a r y  2 X 1 vector. Let c and d denote the a r b i t r a r y  

components of y and note t h a t  (l,l)+ = (5, 5- t o  obtain 

Since c and d a re  a rb i t r a ry ,  c-d = f i s  a rb i t r a ry ,  and the following 
equation resu l t s :  

7 



These coordinates (see f i g .  1) describe a s t r a i g h t  l i n e  whose equation i s  
b = 2 - a. Hence, any vector  whose coordinates s a t i s f y  b = 2 - a (e .g . ,  R, 
whose end point  l i es  on the  l i n e )  i s  a solut ion of the given vector equation. 

Note t h a t  the  solut ion with minimum norm i s  Ro = (l,l)T. 

the or igin might be considered t o  be a nominal set of i n i t i a l  conditions, a 
given nominal parameter state, and s o  for th .  Figure 1 gives the geometrical 
significance of the minimum norm solution. 

t I n  a p rac t i ca l  sense, 

.\ 

THEOREM V I .  The following theorem i s  
\ due t o  Grevi l le  (ref. 9 ) .  Let F be 

any m X p matrix, f denote the pth 

column of F, and F represent the 

submatrix consis t ing of the  f i rs t  p - 1 
columns of F, t h a t  is, 

NASA-5-65-2838 

P 
P- 1 \ \ (1 , l )  

F = (FP-l I fp) 
Ro \,12,0) \ - a  

\ then, l e t t i n g  

( I -  F F+ ) f  = s  
P-1 P-1 P P \ 

Nominal  state 

b - 2 - a  

\ the folluwing equation resu l t s :  

Figure 1. Graphical  solution 

where 

c = F +  f 
P P-1 P 

d =  [( 1 + cEcP)-'cTF' P P-1 

P 

(sP + ") 
(sP = 

THEOREM VII. L e t  A be any n X k matrix, a. denote the nth row of A, 

and A represent t he  submatrix consisting of the f irst  n-1 rows of A, 

t h a t  is, 

n 

n- 1 

8 



Then, l e t t i n g  

the following equation r e s u l t s  r 

I 
; 

where 
+ 

n n-1 q , = a A  

L 

Proof: If 

then according t o  equation (8) of THEOREM I1 

Clearly : a:) has the  form described i n  THEOREM V I  with n = p, m = k, 

Hence, 
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where 

T T+ -1 
dn = + cEcn) cnAn-l 

+ (s:)~ = hn and s = '3 i f  and only i f  h n = 8, the  following n Noting t h a t  

equations resu l t :  
T + 
n n n-1 c = a A  

+ cncnTIA~- l~n  T 

and g, = cT completes the proof of the theorem. n s o  tha t  defining p - n - 'n 

Using the r e s u l t s  and notation of THEOREM VII, the  l e a s t  squares solut ion 
of A x  = b can be real ized as a recursive process. 
noted t h a t  the least squares solut ion a f t e r  a l l  n observations are made i s  
given by 

To t h i s  end it need only be 

+ x̂  = A b  n 
+ 

so  t h a t  wri t ing A b i n  par t i t ioned form the following equation i s  obtained: 

i s  a bn 
where bn,l i s  a column vector of  the f irst  n-1 observations and 

1 X 1 vector corresponding t o  the nth observation. Multiplication yields  

10 



h + x =  n An-lbn-l - PnSbn-l  + Pnbn 

n 

n-1 - PnSbn-l + Pnbn = x  

+ the  last expression may be wr i t ten  as Now since 4 = anAn-l' 

A n x = x  - p a 2  n n-1 n n n-1 + Pnbn 

Note that t h i s  recursive algorithm- involves a t  most t he  generalized inver- 

s ion of tk row vector A l l  other quant i t ies  a re  e i t h e r  n 
known from the  (n-1)s t  s t a t e ,  or they are simple functions of the  n th  obser- 

vation. The generalized inversion of t he  row vector  an 

+ , r i v i ~ ~ l  i n  l i g h t  of THEOREM V. 

THE COVARIANCE O F  THE ESTIMATE 

Consider the vector  equation Ax - b = e where e i s  an n X 1 e r r o r  
vector.  I n  the absence of weighting it i s  usual ly  assumed t h a t  E ( e )  = and. 

E denotes the  expected value operator. The covariance 
of the  n th  estimate i s  given by 

Cpn,sn) = E [ P n  - x) ( Gn - x ) ~ ]  

The equation Ax - b = e may have i n f i n i t e l y  many solut ions;  however, the 

x = A (b + e )  i s  chosen. + minimal norm solut ion 

l e a s t  squares estimate x = A b, the following equation resu l t s :  

With t h i s  solution and the  
A + 
n 

C P n , G n )  = E [(A'b - x)(Afb - x ) ~ ]  

= E [(A+e)(A+e)T] 

+ T +T) = E  ( A  ee A 

= A+E (eeT) A+T 

= ACIA+T = A + A +T 

11 



The recursive computation of C(Sn,Gn) f'rom Cpn-l,sn-l) and the nth 

observation i s  achieved i n  the  following way: 

T + +T 
c($,Gn) = A A = &-l - PnS, i Pn) Kw1 - PnS, I Pn) 

T T 

Since 

then, 

+ g , = a A  n n-1 

WEIGHTED OBSERVATIONS 

T -1 To minimize (Ax - b )  W (Ax - b) ,  t h a t  is ,  weighted least squares, note t h a t  
W i s  usually a pos i t ive  d e f i n i t e  symmetric covariance matrix and hence there  

T e x i s t s  a matrix Q such t h a t  Q Q = W-I. For A = QA and = Qb the  theo- 
r e t i c a l  r e s u l t s  a r e  the same. 

N 

CONCIJITDING REMARKS 

The recursive least squares equation, by i t s  very nature, does not involve 
I n  nonlinear parameter estimation procedures the minimal 

T 

s ingu la r i ty  problems. 

norm solut ion of t he  parameter s t a t e  deviation i s  always given by A b .  The 

minimal norm solut ion i s  the only solut ion when A A i s  nonsingular. However, 

i n  i t e r a t i v e  procedures the  s ingu la r i ty  of A A would not bring the i t e r a t i o n  
t o  a h a l t .  I n  any case, the s t a t e  estimation may begin after the f i rs t  obser- 
vation i s  made. An addi t iona l  computational feature of the algorithm i s  a small 
machine storage requirement. Note t h a t  the  computation of x, only requires 

+ 

T 

A 

and 
A IL + 

of the k >I: k matrices An-lAn-l n- 1) storage (from camputation of x 
+ *+T and the estimate xnml. An-l n-1 

stance, i n  onboard spacecraft  cmputations.  

A 

Such a feature  would be important, for in-  
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